[부품] 전자부품정보 : 트랜지스터 - 기본 설계법

transistor5-1.gif
:: 트랜지스터 회로 설계시 유의사항
  몇 볼트까지 사용할 것인가?
컬렉터·이미터간 최대정격전압(Vceo)를 기준으로 하며
실제로는 이것의 1/2 이하의 전압에서 사용하는 것이 좋습니다.
  몇 암페어까지 흐르게 할 것인가?
이것은 2가지 관점에서 생각해야 합니다.
먼저 컬렉터 최대정격전류(Ic)를 초과해서는 않되며 실제 사용시에는 1/2 이하에서 사용해야 합니다.
또 하나는 콜렉터 손실(Pc)을 기준으로 최대 전력을 초과하여 사용하지 않도록 하는 것입니다. 이것의 사용전압 × 전류로 계산하여 역시 1/2 이하에서 사용해야합니다.
그러나 이것은 방열판의 유무와 주위 온도에따라 큰 차이가 있으므로 데이터 쉬트를 확인하는 것이 좋습니다.
  증폭률을 얼마로 사용할 것인가?
직류전류증폭율(hfe)로 단순하게 입력전류의 몇 배가 되어 출력되는지 계산하면 되지만 트랜지스터마다 편차가 있으므로 최소값을 기준으로 해야합니다.
  어느정도의 주파수까지 증폭할 것인가?
이것은 이득 대역폭 (fT)을 기준으로 하여 다음과 같이 산출 합니다.
사용 가능한 주파수 = 이득 대역폭(fT) ÷ 직류 전류 증폭 율(hfe)
:: 디지탈 회로에서 사용법
트랜지스터를 디지탈 회로에서 사용하는 목적은 주로 다음과 같은 것이 있으며 그에 따른 사용법을 설명합니다.
  큰전류나 높은전압의 제어
세그먼트 발광 다이오드의 제어, 모터나 릴레이등의 드라이브, 전원의 On/Off,조명등의 제어
전압레벨의 변환 : 광센서나 마이크의 신호 증폭 및 변환
직류전압 증폭 : A/D 변환 입력 신호 증폭및 센서 출력의 증폭
  큰 부하 제어
여기서 말하는 큰부하라는 것은 수 10mA 이상의 전류가 흐르거나 5V 이상의 전압이 필요한 부하를 말하며 디지탈 IC로는 직접 드라이브할 수 없는 모터의 제어나 릴레이또는 솔레노이드 코일등의 드라이브가 여기에 해당됩니다. 

이와 같은 경우 트랜지스터의 사용법은 다음 그림과 같이 사용하는 것이 기본이며 부하전류의 방향에 따라서 (a),(b)의 두가지 사용법이 있고 사용하는 트랜지스터도 NPN형과 PNP형으로 각각구분하여 사용해야 합니다.
trsch1.gif
트랜지스터의 선정은 드라이브하는 전압과 전류를 고려하여 선정하며 전류 증폭율이나 주파수 특성은 생각할 필요가 없습니다. 
동작 원리는 (a)의 경우 디지탈 IC의 출력이 High 가 되면 4.5V 이상의 전압이 되어 이것이 저항을 통하여 트랜지스터에 Ib가 흐르게하여 트랜지스터가 On되고 Ic가 흘러서 부하가 작동합니다. 

역으로 디지탈 IC의 출력이 Low로 되면 트랜지스터의 Vbe(0.6V 정도)보다 작은 출력전압 (0.2V 정도)이 되기 때문에 Ib는 흐르지 않아서 트랜지스터가 Off되어 부하전류도 흐르지 않게 됩니다. 

(b)의 경우에는 반대로 디지탈 IC의 출력이 High가 되면 트랜지스터는 Off 되어 부하전류는 흐르지 않으며,디지탈 IC 출력이 Low로 되면 트랜지스터가 On 되어 부하에 전류가 흐르게 됩니다. 

R1과 R2의 저항치 결정은 트랜지스터가 On되었을때 베이스 전류(Ib)=부하 전류(Ic)÷직류 전류 증폭 율(hfe) 로 정해지는 전류 Ib보다 약간 큰 전류가 흐르도록 저항값을 설정해야 합니다. 이 저항이 없으면 디지탈 IC에 과전류가 흐르게 되어 디지탈 IC가 발열로 파손됩니다. 

예:부하전류가 100mA 이고 hfe=100, Ib=1mA 라 하고 IC의 전원을 5V라고 하면 ,Vbe는 약 0.6V로 일정이기 때문에 R1 = R2 = (5V - 0.6V) ÷ 1mA = 4.4KΩ 이나 약간 여유를 주어서 3.3 KΩ 정도면 적당할것입니다. 


* 주의사항 

트랜지스터로 드라이브하는 부하가 모터나 릴레이처럼 코일부하일때는 역기전력에 주의할 필요가 있습니다.즉 코일의 전류를 On/Off할때 순간적으로 역방향의 높은 전압이 코일의 양단에 발생하는데 이것을 그데로 방치하면 트랜지스터의 컬렉터-이미터간에 가해져서 경우에 따라 트랜지스터가 파손될수도 있습니다.
또한 이 역기전력은 노이즈로 작용하여 주변 회로의 오동작을 유발 할 수도 있습니다. 따라서 이것을 방지하기 위해 다음 그림과 같이 다이오드를 코일의 양단에 병렬에 접속합니다. 또한 이 다이오드는 최대한 코일에 가까운 위치에 붙여서 역 기전력을 흡수시켜야 합니다.
trsch2.gif
:: 전압레벨 변환 방법
각종 센서류는 출력 전압이 낮아서 디지탈 회로에 직접입력으로 사용하기 부적절한 경우가 많으며 이때 트랜지스터로 전압레벨을 증폭하여 사용합니다. 이때는 결국 직류전압증폭기로 사용하는것이 되기 때문에 본래의 기본증폭 회로로 구성하면 되나 On/Off를 판정하는 정도면 족하기 때문에 회로를 간략화 할 수 있습니다. 

실제로 사용하는 회로는 그림과 같이 되며 입력으로 사용된 센서의 출력 전압이 평상시는 거의 0V이고 검출시에 0.6V 이상 일때와 0.6V 이하 일 때 회로가 조금 다르게 됩니다.
trsch31.gif
(a)의 회로에서 센서의 출력이 평상시 0V에 가깝기 때문에 트랜지스터는 Off 되어 디지탈 IC의 입력은 거의 전원전압에 가까워저서 High로 되고, 센서 검출시에 출력이 0.6V 이상이 되면 트랜지스터가 On으로 되어 디지탈 IC의 입력은 거의 0V가 되고 Low로 됩니다. 

R1과 Rc의 저항치 결정방법은 먼저 Rc는 디지탈 IC의 입력전류는 수 10μA 이하이기때문에 트랜지스터가 Off되었을 때 Rc 를 경유하여 디지탈 IC에 전류가 흐를 수 있도록 수 10KΩ 이하의 저항이면 적당하며 보통은 5KΩ∼20KΩ 정도가 쓰여집니다. 

R1은 센서의 출력 전류에 의하여 결정되며 너무 작게 하면 센서에 무리를 주어 감도가 떨어질수 있습니다. 대부분은 수10KΩ 정도면 적당하며 일반적으로 10KΩ ~ 50KΩ 정도가 쓰여지지만 센서의 규격에 최적 부하저항치가 있으면 그에따른 저항치를 사용하며 이때는 센서의 부하는 R1과 트랜지스터의 입력 저항이 병렬이 되므로 이점도 주의하여 결정해야 합니다, 참고로 트랜지스터의 입력저항은 수 10KΩ정도 입니다.
trsch32.gif
(b) 회로에서 저항치의 결정 방법은 R1과 Rc는 (a)와 같지만 R2는 수 10KΩ의 가변저항을 사용하여 평상시에 트랜지스터가 Off되고 센서감지시에 On으로 되도록 조정하는 것이 필요합니다.이때 R1 과 R2의 비가 0.6대 Vcc의 비와 거의 같은 정도가 되도록 하는 것이 좋습니다. 

R1 과 트랜지스터 입력저항(수 10KΩ)의 병렬 저항이 센서의 부하가 되기 때문에 센서의 부하 드라이브 능력을 넘지 않게 R1 이 수KΩ (많게는 2KΩ~ 5KΩ정도)이 되도록 합니다. 

센서의 출력 신호가 1msec 이하의 짧은 펄스일때는 사용할 트랜지스터의 주파수 특성을 고려할 필요가 있지만 그 이외에는 주파수 특성을 걱정할 필요가 없으며 사용전압과 전류증폭율이 적당한 것을 사용하면 좋을것입니다. 출력전류는 디지탈 IC정도라면 수 10μA 정도면 충분하기 때문에 걱정하지 않아도 될 것입니다.
:: 아날로그 회로에서 사용법
아날로그 신호를 증폭하기 위한 기본 회로는 대부분 이미터 접지 회로를 사용하며 최대한 깨끗하게 입력 신호를 증폭하도록 해야 합니다. 

그 기본회로는 다음 그림과 같으며 회로정수의 결정방법은 아래와 같은 순서로 행합니다.여기로 미리 사용할 전원전압(Vcc)은 정해 있는 것으로 하고 사용할 트랜지스터의 전류 증폭율(hfe)은 100으로 가정합니다. 트랜지스터의 선정시는 주파수 특성이 중요하고 이득 대역폭 (fT)이 높은것을 사용할 필요가 있습니다. 

예:
fT가 200MHz 이고 hfe가 100이라면,200MHz ÷ 100 = 2MHz 로 되어
실제로 사용할 수 있는 주파수는 2MHz 정도가 됩니다.
따라서 10MHz 이상의 주파수로 사용하려면 ft는 1GHz 이상이 필요하게됩니다.
trsch4.gif
  1. 컬렉터 저항(Rc)의 결정
이것은 부하전류(Ic)를 고려해서 결정해야 합니다. 
파워가 필요한 드라이브일때는 수 100mA 정도가 필요하며 통상은 수 mA ~ 수 10mA 정도가 일반적입니다. 
Rc는 무신호시 출력전압이 전원 전압의 1/2이 되도록 하면 되며 

Rc = (Vcc/2) ÷ Ic 로 계산하면 구할 수 있습니다. 

(예:Vcc = 5V Ic = 2mA 라면 Rc = 1.25KΩ = 약1KΩ)
  2. 이미터 저항(Re)의 결정
이 저항은 입력신호가 1V 이상이 되어도 출력이 포화하지 않도록 하여 신호를 깨끗하게 증폭 할 수 있도록 합니다. 값의 결정은 러프하게 생각해도 좋으며 통상 Rc의 1/5 ∼ 1/10 정도면 족합니다. (예:1KΩ ÷ 5 = 200Ω)
  3. 베이스 저항(R1과 R2)의 결정
먼저 필요한 베이스 전압(Vb)을 구합니다.
무신호시 Re에는 Ic의 전류가 흐르고 있고 베이스 이미터간 전압은 약 0.6V로 거의 일정하기 때문에 

Vb = Ic×Re+0.6로 됩니다.(예: 2mA × 200Ω+0.6 = 1.0V) 

다음에 필요한 베이스 전류(Ib)를 전류 증폭율(hfe)에 의해 계산하면 

Ib = Ic ÷ hfe(예:2mA÷100 = 0.02mA hfe=100)가 됩니다. 

여기에서 베이스 저항은 베이스 전류의 10배 이상의 전류가 흐르게 하여 베이스전류 및 베이스 전압이 변동하지 않도록 하며 R1,R2는 다음과 같이 계산합니다. 

R1 = (Vcc - Vb) ÷(10×Ic), R2 = Vb ÷ (10 × Ic)
(예:R1=(5V-1V)÷10×0.02mA=20KΩ R2=1V÷(10×0.02mA)=5KΩ )
  4.커플링 콘덴서(Cin)의 용량결정
교류신호를 증폭하는 경우는 직류전압과 무관하게 하기 위해 커플링 콘덴서(Cin)가 필요해집니다.이 값은 입력신호의 최저 주파수(fc)에 대하여 충분히 무시할 수 있는 임피던스가 되도록 해야 합니다. 입력용 콘덴서 Cin 은 트랜지스터의 입력 임피던스를 Rin이라고 한다면 

fc > 1÷(2π × Rin × Cin) 이 되도록 정해야 하며 입력 임피던스 Rin은 대략 R1과 R2의 병렬 저항값이 됩니다. 

예:fc를 20Hz라고 할때 Cin > 1/(6.3 × 4KΩ × 20Hz) = 2μF 
Cin = 4.7μF 정도를 사용하면 좋습니다,)
  5. 바이패스 콘덴서(Ce)의 결정
이미터의 콘덴서도 최저 주파수에 대하여 충분히 낮은 인피던스가 되도록 정해야 하며
Ce > 1÷(2π × fc × Re)로 구합니다. 

예: Ce>1/(6.3×20Hz×200Ω)=40μF → Ce=100μF) 

《참고》직류증폭시는 Cin이나 Ce는 불필요 하기 때문에 사용하지 않아도 좋습니다.


출처 : No1. 전자부품 쇼핑몰 아이씨뱅큐 (https://www.icbanq.com) 

0
0
이 글을 페이스북으로 퍼가기 이 글을 트위터로 퍼가기 이 글을 카카오스토리로 퍼가기 이 글을 밴드로 퍼가기

전자 부품

번호 제목 글쓴이 날짜 조회수
34 부품 Ultrasonic Ranging Module HC - SR04 icon HellMaker 06-24 10,994
33 부품 LSM6DS33 icon HellMaker 02-13 12,056
32 부품 RT8068A Datasheet icon HellMaker 12-28 10,396
31 부품 MP3422 Datasheet icon HellMaker 12-28 10,241
30 부품 TP5100 icon HellMaker 12-27 13,288
29 부품 MPU6050 Data Sheet icon HellMaker 05-05 11,277
28 센서 모센 센서 HC-SR501 icon HellMaker 09-10 11,700
27 부품 전자부품정보 : 광학반도체 - 기타 광전자 소자 icon HelloMaker 11-01 12,854
26 부품 전자부품정보 : 광학반도체 - Photo Diode icon HelloMaker 11-01 15,645
25 부품 전자부품정보 : 광학반도체 - LED? icon HelloMaker 11-01 12,545
24 부품 전자부품정보 : 사이리스터 - IGBT란 icon HelloMaker 11-01 14,458
23 부품 전자부품정보 : 사이리스터 - SCR의 특성곡선 icon HelloMaker 11-01 12,444
22 부품 전자부품정보 : 사이리스터 - SCR의 동작원리 icon HelloMaker 11-01 20,153
21 부품 전자부품정보 : 사이리스터 - 사이리스터란? icon HelloMaker 11-01 13,424
20 부품 전자부품정보 : 릴레이 icon HelloMaker 11-01 12,933
19 부품 전자부품정보 : 스위치 icon HelloMaker 11-01 10,820
18 부품 전자부품정보 : 발진소자와 필터 icon HelloMaker 11-01 11,361
17 부품 전자부품정보 : 코일과 트랜스 icon HelloMaker 11-01 12,268
16 부품 전자부품정보 : 디지털 IC - 대표적인 로직 IC icon HelloMaker 11-01 10,758
15 부품 전자부품정보 : 디지털 IC - 데이터시트 보는법 icon HelloMaker 11-01 18,514